Abstract

ObjectiveTo evaluate the strength and ion release of experimental composites containing TEGDMA-functionalized calcium phosphate particles. MethodsSeven composites containing equal parts (in mols) of BisGMA and TEGDMA and 60vol% of fillers were manipulated. Filler phase was constituted by silanized barium glass and 0% (control), 10% or 20% (volume) of dicalcium phosphate dihydrate (DPCD) particles, either non-functionalized or functionalized with two different TEDGMA contents. DCPD particles were synthesized and characterized by X-ray diffraction (XRD), elemental analysis, surface area and dynamic light scattering. Composites were tested for degree of conversion (DC) by near-FTIR. Biaxial flexural strength (BFS) was determined after 24h and 28days in water. Calcium and phosphate release after 7days was assessed using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey test (alpha:5%). ResultsXRD confirmed the crystalline structure corresponding to DCPD. Elemental analysis revealed particles with zero, 14% or 22% TEGDMA, with similar D50 (around 19μm) and surface areas from 3.5 to 11.4m2/g. The presence of DCPD did not reduce DC. After 24h, functionalization (both 14% and 22% TEGDMA) improved composite strength in comparison to non-functionalized DCPD, both at 10% and 20% levels. After 28days, BFS of materials containing 10% functionalized DCPD were statistically similar to the control containing only barium glass. Among composites containing 10% DCPD, particle functionalization with 14% TEGDMA did not jeopardize ion release. SignificanceAt 10vol%, the use of TEGDMA-functionalized CaP particles improved composite strength in relation to non-functionalized particles, while maintaining similar ion release levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.