Abstract

Tightly bonding of bioactive coating is the first crucial need for orthopaedic implants. This study describes a novel and convenient technique to prepare bioactive coating with high adhesion on orthopaedic substitutes made of polymeric matrix. Here, a chemical corrosion method has been adopted to fabricate a coating on the surface of injection-moulded polyamide66 (PA66) substrates by corrosive nano-hydroxyapatite/polyamide66 (n-HA/PA66) composite slurry. Scanning electron microscopy observation shows that a porous chemical corrosion region presents between the coating and dense PA66 substrate. Energy-dispersive X-ray spectroscopy analysis indicates that the chemical corrosion region is mainly composed of PA66 matrix, and the coating layer is an n-HA-rich layer. Both the pore size and n-HA composition increase gradually from the polymeric substrate towards the coating surface. Mechanical testing shows the bonding strength can reach 13.7 ± 0.2 MPa, which is much higher than that fabricated on polymeric matrix by other coating methods. The gradual transition in coating structure and composition benefits for the interface bonding and for the surface bone-bonding bioactivity. Subsequent cell experiments corroborate n-HA-rich coating and a porous structure is benefitting for cell attachment and proliferation. The convenient coating method could be popularized and applied on similar polymer implants to produce a tightly and porous bioactive coating for bone tissue regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.