Abstract

A range of potentially bioactive ceramic coatings, based on combinations of either hydroxyapatite (HA) or titanium oxide nanoparticles with carbon nanotubes (CNTs), have been deposited on metallic substrates, using electrophoretic deposition (EPD). Sol–gel derived, ultrafine HA powders (10–70 nm) were dispersed in multi-wall nanotube-containing ethanol suspensions maintained at pH = ∼3.5 and successfully coated onto Ti alloy wires at 20 V for 1–3 min For TiO2/CNT coatings, commercially available titania nanopowders and surface-treated CNTs in aqueous suspensions were co-deposited on stainless steel planar substrates. A field strength of 20 V/cm and deposition time of 4 min were used working at pH = 5. Although the co-deposition mechanism was not investigated in detail, the evidence suggests that co-deposition occurs due to the opposite signs of the surface charges (zeta potentials) of the particles, at the working pH. Electrostatic attraction between CNTs and TiO2 particles leads to the creation of composite particles in suspension, consisting of TiO2 particles homogenously attached onto the surface of individual CNTs. Under the applied electric field, these net negatively charged “composite TiO2/CNT” elements migrate to and deposit on the anode (working electrode). The process of EPD at constant voltage conditions was optimised in both systems to achieve homogeneous and reasonably adhered deposits of varying thicknesses on the metallic substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.