Abstract

Aim: Calcium silicate-based cements represent safe and predictable materials widely used in different fields of endodontics. They can be applied as pulp dressing agents during vital pulp therapy (VPT) of carious-affected deciduous or permanent teeth with immature roots as well as endodontic cements in case of root perforation or regenerative endodontic procedures. Therefore, it’s crucial to demonstrate biocompatible and antibiofilm properties of bioactive cements (i.e. MTA and Biodentine) in order to support their successful use in the clinical field. Materials and Methods: Biocompatibility of ProRootMTA and Biodentine specimens was assessed through cell culture of Saos-2 cells and both cement extracts by viability assay, oxidative stress analysis and immunofluorescence evaluation; on the other hand, antibiofilm efficacy was assessed by evaluating the biofilm forming ability of Streptococcus mutans onProRootMTA and Biodentine disks using Crystal Violet assay. Results: Cells exposed to ProRootMTA and Biodentine showed a good cell viability, slightly better in presence of the first; moreover, cells seeded on ProRootMTA presented a higher degree of biocompatibility compared to Biodentine. Accordingly, Biodentine demonstrated lightly fewer promising outcomes in terms of oxidative stress and focal adhesions of cells than ProRoot MTA, although the differences were not statistically significant. Inhibition of superficial colonization as well as biofilm forming ability of S. mutants were successfully obtained with both evaluated cements, even though ProRootMTA demonstrated a more efficient time-dependent antibiofilm effect than Biodentine. Conclusion: Bioactive cements proved to be biocompatible and to possess antibiofilm properties. When compared, MTA would seem to perform slightly better and could be considered as the gold standard material in the endodontic procedures.

Highlights

  • Bioactive materials basically contain two ceramic compounds, as tricalcium silicate and dicalcium silicate

  • Cell viability was determined by using MTT assay and Reactive Oxygen Species (ROS) measurements and Immunofluorescence microscopy analysis were conducted on the cells exposed to cement extracts at 1:1 and 1:4 dilutions

  • Cells exposed to Mineral Trioxide Aggregate (MTA) extract showed a better cell vitality than those grown in the presence of the Biodentine one

Read more

Summary

Introduction

Bioactive materials basically contain two ceramic compounds, as tricalcium silicate and dicalcium silicate. Www.mdpi.com/journal/proceedings in the clinical field, the aim of the present in vitro study was to demonstrate biocompatibility and antibiofilm properties of MTA and Biodentine.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.