Abstract

Highly efficient wound healing and skin regeneration remain a challenge. Long-term inflammation and bacterial infection can inhibit the healing process and lead to the scar formation. Here, we report a hydrogel (FEM) formed by self-assembly of ε-poly-l-lysine-F127-ε-poly-l-lysine (EPL-F127-EPL) and metformin for wound repair. Especially, the role of metformin-based antibacterial hydrogel in wound healing and repair was investigated for the first time. FEM has inherent multifunctional properties, including controlled metformin release, anti-inflammatory and antibacterial activity, temperature responsiveness, injectable and self-healing capabilities. The in vivo results showed that FEM dressings accelerated the wound healing by stimulating the angiogenesis process of the wound tissue and anti-inflammation. This study shows that the multifunctional metformin-contained hydrogel scaffolds could enhance the wound repair through the anti-inflammation and accelerated angiogenesis, which could also expand the biomedical applications of metformin-based biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.