Abstract

The use of carbon-based nanomaterials (CNMs) such as multiwalled carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO) is increasing across many applications because of their unique and versatile properties. These CNMs may enter the aquatic environment through many pathways, creating the potential for organism exposure. The present study addresses the bioaccumulation and toxicity seen in Daphnia magna exposed to CNMs dispersed in sodium dodecyl benzene sulfonate (SDBS). In study I, D. magna were exposed to varying outer diameters of MWCNTs for 24 h in moderately hard or hard freshwater. Bioaccumulation of MWCNT was found in all treatments, with the highest concentrations (0.53 ± 0.27 μg/g) in D. magna exposed in hard freshwater (p < 0.005). The median lethal concentration (LC50) was determined for D. magna exposed to CNMs in moderately hard and hard freshwater. In study II, D. magna were exposed to CNMs for 72 h in moderately hard freshwater to assess swimming velocity and generation of reactive oxygen species (ROS) detected by dichlorofluorescein fluorescence. An overall decrease was seen in D. magna swimming velocity after exposure to CNMs. The generation of ROS was significantly higher (1.54 ± 0.38 dichlorofluorescein mM/mg dry wt) in D. magna exposed to MWCNTs of smaller outer diameters than in controls after 72 h (p < 0.05). These results suggest that further investigation of CNM toxicity and behavior in the aquatic environment is needed. Environ Toxicol Chem 2017;36:2199-2204. © 2017 SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.