Abstract

The mechanisms underlying the bioaccumulation and detoxification of tetrabromobisphenol A (TBBPA) by terrestrial invertebrates are poorly understood. We used uniformly ring-14C-labelled TBBPA to investigate the bioaccumulation kinetics, metabolites distribution, and subsequent detoxification strategy of TBBPA in the geophagous earthworm Metaphire guillelmi in soil. The modeling of bioaccumulation kinetics showed a higher biota-soil-accumulation-factor of total 14C than that of the parent compound TBBPA, indicating that most of the ingested TBBPA was transformed into metabolites or sequestered as bound residues in the earthworms. Bound-residue formation in the digestive tract may hinder the accumulation of TBBPA in other parts of the body. Nonetheless, via the circulatory system, TBBPA was transferred to other tissues, especially the clitellum region, where sensitive organs are located. In the clitellum region, TBBPA was quickly transformed to less toxic dimethyl TBBPA ether and rapidly depurated through feces. We conclude that the detoxification of TBBPA in M. guillelmi occurred via bound-residue formation in the digestive tract as well as the generation and depuration of O-methylation metabolites. Our results provided direct evidence of TBBPA detoxification in earthworms. Further researches are needed to confirm whether O-methylation coupled with depuration is a common detoxification strategy for phenolic xenobiotics in other soil organisms needs to be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call