Abstract

Concentrations of six indicator PCB congeners (IUPAC nos. 28, 52, 101, 138, 153, and 180) were measured in several organs and adipose tissue of a freshwater predatory fishes (European perch, northern pike, pike perch, wels catfish) as well as in nonpredators (common carp, freshwater bream, goldfish, white bream) and in acanthocephalan Acanthocephalus lucii from the water reservoir Zemplínska šírava (Eastern Slovakia), which is considered to be one of the most PCB-contaminated places in Europe. Concentration of PCBs was determined by capillary gas chromatography in samples from May to September 2009. The two-way main-effect ANOVA confirmed that feeding habits of fish (P < 0.00001) and peculiarity of individual fish organs (P < 0.01) affect PCB bioaccumulation. The total amount of PCBs was significantly higher (P < 0.05) in predators compared to nonpredators. Tissue-specific differences were found in PCB accumulation in both fish groups. PCBs were predominantly accumulated in the liver and hard roe. Individual congeners were not distributed homogeneously within the investigated organs and adipose tissue. PCB 153 was present in higher concentrations than the other congeners in all fish organs as well as in adipose tissue comprising an average 31 and 34 % of ΣPCB in predators and nonpredators, respectively. Acanthocephalans, attached to the intestine of perch, absorbed significantly higher concentrations of PCBs (P < 0.001) than the muscles, liver, kidney, brain, and adipose tissue of their host. About 20 times lower amount of PCBs was detected in the liver and almost 3 times in muscles of infected perch. Data on PCB accumulation in perch infected with acanthocephalans demonstrated a decline of PCB values in all organs as well as in adipose tissue compared to noninfected fish. About 20 times lower amount of PCBs was detected in the liver and almost 3 times in muscles of infected perch. Present results could indicate that some parasitic organisms may influence positively their hosts in PCB-contaminated environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call