Abstract

This study aimed to establish the distribution of As, Cd, Cu, Pb, and Zn, in the muscle and liver of the spotted ratfish Hydrolagus colliei from the northern Gulf of California to establish the bioaccumulation background data in this species. The individuals (n = 110) were obtained by bycatch from the Gulf of California hake fisheries, and the metals and metalloid were measured by atomic absorption spectrometry. The element with the highest concentration in the muscle (15.19 ± 5.40mgkg-1) and the liver (20.98 ± 10.30mgkg-1) was As, followed by essential elements (Zn > Cu), and the lowest were the non-essential Pb (0.029 ± 0.014 and 0.048 ± 0.038mgkg-1, muscle and liver, respectively) and Cd (0.022 ± 0.014 and 0.796 ± 0.495mgkg-1, muscle and liver, respectively). The liver showed higher bioaccumulation than the muscle in all the studied elements. The sex was not a factor that influenced the bioaccumulation. The concentrations of As in the muscle did not exceed the maximum permissible limits of Mexican legislation, and < 50% of the samples exceed Cd and Pb limits of the Mexican, European Union, and WHO/FAO regulations. The differences found between the elements and tissues could be related to the different diets of the species, their migratory patterns, and their life conditions. Studies in the deep-sea water H. colliei are limited, and further investigations are needed regarding the feeding habits of H. colliei as well as the interactions of potentially toxic elements within the deep-sea water habitat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.