Abstract

The extensive use of polybrominated diphenyl ethers (PBDEs) and decabromodiphenyl ethane (DBDPE) has made them widespread contaminants in abiotic environments, but data regarding their bioavailability to benthic organisms are sparse. The bioaccumulation potential of PBDEs and DBDPE from field-collected sediment was evaluated in the oligochaete Lumbriculus variegatus using a 49-d exposure, including a 28-d uptake and a 21-d elimination phase. All PBDEs and DBDPE were bioavailable to the worms with biota-sediment accumulation factors (BSAFs) ranging from 0.0210 g organic carbon/g lipid to 4.09 g organic carbon/g lipid. However, the bioavailability of highly brominated compounds (BDE-209 and DBDPE) was poor compared with that of other PBDEs, and this was confirmed by their relatively low freely dissolved concentrations (C(free)) measured by solid-phase microextraction. The inverse correlation between BSAFs and hydrophobicity was explained by their uptake (k(s)) and elimination (k(e)) rate constants. While ke changed little for PBDEs, ks decreased significantly when chemical hydrophobicity increased. The difference in bioaccumulation kinetics of brominated flame retardants in fish and the worms was explained by their physiological difference and the presence of multiple elimination routes. The appropriateness of 28-d bioaccumulation testing for BSAF estimation was validated for PBDEs and DBDPE. In addition, C(free) was shown to be a good indicator of bioavailability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call