Abstract

Microcosms were built up to simulate a pond system with polybrominated diphenyl ether (PBDE) contaminated sediment and bioorganisms. The microcosms were divided into groups A and B. In group A, both benthic invertebrates (tubificid worms) and carp (Cyprinu carpio) were added, while in group B, only fish were added. After exposure for 20 d, the fish were sampled (exposure I). A net was fixed in the microcosms, and new fish were added (exposure II). These fish were prohibited from contacting the sediment by the net, and the accumulation and depuration of PBDEs in the fish were investigated. Among 11 monitored PBDE congeners (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, BDE-206, BDE-207, BDE-208, and BDE-209), only 5 congeners (BDE-28, BDE-47, BDE-100, BDE-153, and BDE-154) were detected in the carp fillets and liver. BDE-99 and BDE-183 were not detected in the fish because of the efficient metabolic debromination in carp tissues. The uptake of PBDEs in exposure I was significantly higher/faster than that in exposure II, since the fish in exposure I had an opportunity to take in more of the highly contaminated particles. The uptake kinetics (k(s)) and elimination (k(e)) rate coefficients showed a general trend of decreasing with increasing log K(ow). No significant difference was observed in uptake/depuration kinetics between groups A and B, indicating that the tubificids' reworking does not affect the bioaccumulation of sediment-associated PBDEs in fish significantly. All the PBDE congeners, including nona- and deca-BDEs, were bioaccumulated in the tubificid worms. The PBDE concentrations in the worms were significantly higher than those in the fish, and the congener profile of the sevem major congeners (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, and BDE-183) was distinctly different from that of fish tissues. The biota-sediment accumulation factors in the worms ranged from 0.01 to 5.89 and declined with increasing bromination and log K(ow.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.