Abstract
Flaxseed is an important source of lignan secoisolariciresinol diglucoside (SDG) and its aglycone, secoisolariciresinol (SECO). These phenolic compounds can be metabolized to the mammalian lignans enterodiol (ED) and enterolactone (EL) by human intestinal microflora. Flaxseed lignans are known for their potential health benefits, which are attributed to their antioxidant and phytoestrogenic properties. The focus of this study was to determine the bioaccessibility of plant and mammalian lignans in whole flaxseed (WF) and flaxseed flour (FF) throughout the entire digestive process. Moreover, the metabolic activity of intestinal microflora was evaluated. A single-batch in vitro simulation of the digestive process was performed, including fermentation by the intestinal microflora in the colon. Bioaccessibility was calculated as (free lignan)/(total lignan). In digested WF, the bioaccessibility values of SECO, ED and EL were 0.75%, 1.56% and 1.23%, respectively. Conversely, in digested FF, the bioaccessibility values of SDG, ED and EL were 2.06%, 2.72% and 1.04%, respectively. The anaerobic count and short-chain fatty acids indicate that bacteria survival and carbohydrate fermentation occurred. The contents of both SDG and ED were significantly higher in digested FF than in digested WF. FF facilitated the action of intestinal bacteria to release SDG and metabolize ED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.