Abstract

Potentially toxic elements (Pb and Cd) contamination of soil can adversely affect human health. Moreover, these metal ions interact with the gut microbiota after entering the human digestive system. Based on the physiologically based extraction test and the simulator of human intestinal microbial ecosystem, the bioaccessibility of Pb and Cd in soils contaminated with lead-acid power plants was assessed. The gastric stage exhibited the greatest average bioaccessibility of lead and cadmium (63.39% and 57.22%), followed by the small intestinal stage (6.86% and 36.29%); due to gut microorganisms, the bioaccessibility of lead and cadmium was further reduced in the colon stage (1.86% and 4.22%). Furthermore, to investigate soil contamination's effects on gut microbes, 16S rRNA high-throughput sequencing was used to identify the gut microbial species after the colon period. Due to Pb and Cd exposure, the relative abundance of Firmicutes and unidentified_Bacteria decreased, while the relative abundance of Proteobacteria, Synergistota, and Bacteroidota increased. The relationship between environmental factors and the number of microbial species in the gut was also examined using Spearman correlation analysis. Pb and Cd exposure has been found to affect the composition and structure of the gut microbiota.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.