Abstract

Organic and inorganic entities [Cu(II), Co(II), Ni(II) and Zn(II)] have been bridged by N2O2 type heterocyclic imine (CN) ligand for the synthesis of novel organic–inorganic bridged complexes of the type [M(H2L)]. The synthesized complexes were characterized by spectral techniques such as FT-IR, UV–visible, 1H NMR, 13C NMR, EPR, ESI-Mass, elemental analysis, magnetic susceptibility and molar conductivity measurements. The metal complexes adopt square planar geometrical arrangement around the metal ions. DNA binding ability of these complexes has been explored by different techniques viz. electronic absorption, fluorescence, cyclic voltammetry, differential pulse voltammetry and viscosity measurements. These studies prove that CT DNA interaction of the complexes follows intercalation mode. The oxidative cleavage of the complexes with pUC19 DNA has been investigated by gel electrophoresis. Molecular docking calculations have been performed to understand the nature of binding of the complexes with DNA. Moreover, the anti-pathogenic actions of the complexes were tested in vitro against few bacteria and fungi by disk diffusion method. The data reveal that the complexes have higher anti-pathogenic activity than the ligand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call