Abstract
In wine, one method of limiting the addition of sulphites, a harmful and allergenic agent, is bio-protection. This practice consists of the early addition of microorganisms on grape must before fermentation. Non-Saccharomyces yeasts have been proposed as an interesting alternative to sulphite addition. However, scientific data proving the effectiveness of bio-protection remains sparse. This study provides the first analysis of the chemical and microbiological effects of a Metschnikowia pulcherrima strain inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. Like sulphiting, bio-protection effectively limited the growth of spoilage microbiota and had no influence on the phenolic compounds protecting musts and wine from oxidation. The bio-protection had no effect on the volatile compounds and the sensory differences were dependent on the experimental sites. However, a non-targeted metabolomic analysis by FTICR-MS highlighted a bio-protection signature.
Highlights
The large spectrum of action of sulfur dioxide (SO2), linked to its antioxidant, antimicrobial and antioxidasic activities, has justified its use in winemaking processes for many decades (Divol et al, 2012)
The populations of NS, acetic bacteria and B. bruxellensis were heterogeneous between the different wineries, as described in the literature (Barata et al, 2012)
The NS population levels were in the order of 104 CFU/mL with a percentage of native M. pulcherrima species of 33% in winery 1, 7% in winery 2 and 10% in winery 3 (Table 1)
Summary
The large spectrum of action of sulfur dioxide (SO2), linked to its antioxidant, antimicrobial and antioxidasic activities, has justified its use in winemaking processes for many decades (Divol et al, 2012). In a context of societal concern regarding food and wine preservation, along with the quest for environmentally friendly and healthy production, reducing sulphite use represents a major challenge for the wine industry (Salaha et al, 2008). Bio-protection is one of the alternatives recommended in the wine sector. This method consists in adding microorganisms on grape must before fermentation. Among these microorganisms, increasing attention has been focused on the selection of non-Saccharomyces (NS) yeast strains to develop new cultures capable of protecting grape musts and wines (Berbegal et al, 2018; Roudil et al, 2019).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.