Abstract
Protein phosphorylation is a major mechanism of post-translational protein modification used to control cellular signaling. A challenge in phosphoproteomics is to identify the direct substrates of each protein kinase. Herein, we describe a chemical strategy for delivery of a bio-orthogonal affinity tag to the substrates of an individual protein kinase. The kinase of interest is engineered to transfer a phosphorothioate moiety to phosphoacceptor hydroxyl groups on direct substrates. In a second nonenzymatic step, the introduced phosphorothioate is alkylated with p-nitrobenzylmesylate (PNBM). Antibodies directed against the alkylated phosphorothioate epitope recognize these labeled substrates, but not alkylation products of other cellular nucleophiles. This strategy is demonstrated with Cdk1/cyclinB substrates using ELISA, western blotting, and immunoprecipitation in the context of whole cell lysates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.