Abstract
Abstract The NSF-sponsored Coastal Ocean Processes Wind Events and Shelf Transport (WEST) experiment investigates the interplay between wind-driven transport and shelf productivity; while eastern boundary shelves are characterized by high productivity due to upward fluxes of nutrients into the euphotic zone, wind forcing also represents negative physical and biological controls via offshore transport and deep (light-limiting) mixing of primary producers. Although this interaction has been well documented for eastern boundary systems generally and for California specifically, one of the primary goals of WEST was to characterize more fully the interplay between positive and negative effects of wind stress, which result in the consistently elevated biological productivity in these shelf regions. During 3 month-long summer cruises (2000–2002) we observed extremes in upwelling/relaxation, using both in situ instrumentation and remotely sensed data. Relationships between optical and physical properties were examined, with emphasis on biogeochemical implications. During 2000, the WEST region was optically dominated by phytoplankton and covarying constituents. During 2001 and 2002, periods of more intense upwelling favorable winds, we observed a transition to optical properties dominated by detrital and inorganic materials. In all years, the continental shelf break provided a natural boundary between optically distinct shelf and open ocean waters. During 2002, we obtained discrete trace-metal measurements of particulate iron and aluminum; we develop a bio-optical proxy for acetic-acid leachable iron from backscatter and fluorescence, and demonstrate that particulate iron is not well correlated to traditional upwelling proxies such as macronutrients, temperature, and salinity. We conclude that the shelf break between ca. 100 and 200 m water depth serves as a natural break point between coastal and oceanic water masses in this region, and that the elevated biomass and productivity associated with this eastern boundary current regime is dominated by these iron rich, shallow shelf waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Deep Sea Research Part II: Topical Studies in Oceanography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.