Abstract

We use a bio-optical model of the optical properties of natural seawater to investigate the effects of subsurface chlorophyll layers on passive and active remote sensors. A thin layer of enhanced chlorophyll concentration reduces the remote sensing reflectance in the blue, while having little effect in the green. As a result, the chlorophyll concentration inferred from ocean color instruments will fall between the background concentration and the concentration in the layer, depending on the concentrations and the depth of the layer. For lidar, an iterative inversion algorithm is described that can reproduce the chlorophyll profile within the limits of the model. The model is extended to estimate column-integrated primary productivity, demonstrating that layers can contribute significantly to overall productivity. This contribution also depends on the chlorophyll concentrations and the depth of the layer. Using passive remote sensing alone to estimate primary productivity can lead to significant underestimation in the presence of subsurface plankton layers. Active remote sensing is not affected by this bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.