Abstract
Wet-chemical techniques for the synthesis of complex oxide materials have advanced significantly; however, achieving finely dispersed nanoparticles with sizes less than 10 nm still remains challenging, especially for the perovskite family of compounds. On the other hand, a fungus-mediated synthesis technique has recently shown potential to synthesize perovskites such as BaTiO3 with sizes as small as 5 nm. Here we report, for the first time, the use of fungal biomass, at room temperature, to break down chemically synthesized BiMnO3 nanoplates (size ∼150–200 nm) into very small particles (<10 nm) while maintaining their crystalline structure and the phase purity. This novel technique that we have named as “bio-milling” holds immense potential for synergically utilizing both chemical and biological synthesis techniques to synthesize complex oxide nanoparticles with particle sizes less than 10 nm with the proper crystalline phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.