Abstract

IntroductionRecent formulation and microencapsulation studies of probucol (PB) using the polymer sodium alginate (SA) and bile acids have shown promising results but PB stability, and pharmacology profiles remain suboptimal. This study aimed to investigate novel polymers for the nano and micro encapsulation of PB, with the anti-inflammatory bile acid ursodeoxycholic acid (UDCA).Material and methodsSix formulations using three types of polymers were investigated with and without UDCA. The polymers were NM30D, RL30D, and RS30D and they were mixed with SA and PB at set ratios and microencapsulated using oscillating-voltage-mediated nozzle technology coupled with ionic gelation. The microcapsules were examined for physical and biological effects using pancreatic β-cells.Results and discussionUDCA addition did not adversely affect the morphology and physical features of the microcapsules. Despite thermal stability remaining unchanged, bile acid incorporation did enhance the electrokinetic stability of the formulation system for NM30D and RL30D polymers. Mechanical stability remained similar in all groups. Enhanced uptake of PB from the microcapsule by pancreatic β-cells was only seen with NM30D-UDCA-intercalated microcapsules and this effect was sustained at both glucose levels of 5.5 and 35.5 mM.ConclusionUDCA addition enhanced PB delivery and biological effects in a formulation-dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.