Abstract

Synaptic behavior simulation in transistors based on MoS2 has been reported. MoS2 was utilized as the active layer to prepare ambipolar thin-film transistors. The excitatory postsynaptic current phenomenon was simulated, observing a gradual voltage decay following the removal of applied pulses, ultimately resulting in a response current slightly higher than the initial current. Subsequently, ±5V voltages were separately applied for ten consecutive pulse voltage tests, revealing short-term potentiation and short-term depression behaviors. After 92 consecutive positive pulses, the device current transitioned from an initial value of 0.14 to 28.3 mA. Similarly, following 88 consecutive negative pulses, the device current changed, indicating long-term potentiation and long-term depression behaviors. We also employed a pair of continuous triangular wave pulses to evaluate paired-pulse facilitation behavior, observing that the response current of the second stimulus pulse was ∼1.2× greater than that of the first stimulus pulse. The advantages and prospects of using MoS2 as a material for thin-film transistors were thoroughly displayed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.