Abstract

AbstractThe conversion of solar energy to sustainable energy sources is a significant field of study for the relief of the world's energy problems, and among the various strategies developed, semiconductor photocatalysts have received significant attention as a promising candidate due to their attractive efficiency, mild reaction conditions, and low cost. The enhancement of such photocatalysts with plasmonic materials, by virtue of the Schottky junction and localized surface plasma resonance phenomenon, could facilitate the rapid progress in enhancement of photocatalytic efficiency under visible light irradiation. To further improve photocatalytic efficiency, scientists look to nature for inspiration, culminating in the evolution of complex hierarchical structures in order to fully utilize the potential of solar energy. In the past decade, there has been significant progress in the development of bio‐inspired plasmonic photocatalysts, such as antireflective surfaces, 3D photonic structures, and branched structures. This review describes the state‐of‐the‐art bio‐inspired light manipulation approaches, as well as future challenges in solar energy harvesting by plasmonic photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.