Abstract

Photoelectric dual-mode sensors, which respond to strain signal through photoelectric dual-signals, hold great promise as wearable sensors in human motion monitoring. In this work, a photoelectric dual-mode sensor based on photonic crystals hydrogel was developed for human joint motion detection. The optical signal of the sensor originated from the structural color of photonic crystals, which was achieved by tuning the polymethyl methacrylate (PMMA) microspheres diameter. The reflective peak of the sensor, based on 250 nm PMMA PCs, shifted from 623 nm to 492 nm with 100% strain. Graphene was employed to enhance the electrical signal of the sensor, resulting in a conductivity increase from 9.33 × 10-4 S/m to 2 × 10-3 S/m with an increase in graphene from 0 to 8 mg·mL-1. Concurrently, the resistance of the hydrogel with 8 mg·mL-1 graphene increased from 160 kΩ to 485 kΩ with a gauge factor (GF) = 0.02 under 100% strain, while maintaining a good cyclic stability. The results of the sensing and monitoring of finger joint bending revealed a significant shift in the reflective peak of the photoelectric dual-mode sensor from 624 nm to 526 nm. Additionally, its resistance change rate was measured at 1.72 with a 90° bending angle. These findings suggest that the photoelectric dual-mode sensor had the capability to detect the strain signal with photoelectric dual-mode signals, and indicates its great potential for the sensing and monitoring of joint motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.