Abstract

Inspired by superficial neuromasts in the lateral line of fish for the sensing of flow rate, we report a bionic optical microfiber flow rate sensor by embedding a U-shaped microfiber into a thin PDMS film. When immersed into liquid, the PDMS film is deflected by the flowing liquid, resulting in a bending-dependent transmittance change of the embedded microfiber which is directly related to the flow rate of the liquid. The flow rate sensor exhibits a low detection limit (< 0.05 L/min), a high resolution (0.005 L/min), and a fast response time (12 ms). In addition, the sensitivity and working range of the sensor are tunable in a wide range via adjusting the thickness of PDMS film, the microfiber diameter, and/or the working wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call