Abstract

Inspired by natural plants, thermoresponding hydrogel (TRH) structures have been designed to trigger mechanical instability with fast actuation. Tough Ca-alginate/poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been synthesized by the hybrid of physically cross-linked alginate and covalently cross-linked PNIPAM. The tough Ca-alginate/PNIPAM hydrogel exhibits 30 kPa of elastic modulus, 280 J/m2 of fracture energies, and fivefold of uniaxial stretch. A multilayered structure made of (Ca-alginate/PNIPAM)/(Ca-alginate/poly (acrylamide)) hydrogels demonstrate fast actuation induced by mechanical instability. A finite-element simulation model is developed to investigate the deformation and to guide the structural design of the hydrogels. The instability-triggering mechanism can enhance the actuation performances of hydrogel structures in applications, such as drug delivery, microfluid control system, and soft biomimetic robotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.