Abstract

Printer identification models are provided for the goal of distinguishing the printer that produced a suspicious imprinted document. Source identification of a published document can easily be a significant procedure intended for the forensic science. The arising problem is that the extraction of many features of the printed document for printer identification sometimes increases time and reduces the classification accuracy since a lot of the document features may come to be repetitive and non-beneficial. Distinct combinatorial collection of features will need to be acquired in order to preserve the most effective fusion to accomplish the maximum accuracy. This paper presents an intelligent machine learning algorithm for printer identification that adopts both of texture features formulated from gray level co-occurrence matrix of the printed letter ''WOO'' and genetic heuristic search to select the optimal reduced feature set. This integration aims to achieve high classification accuracy based on small group of discriminative features. For classification, the system utilizes k-nearest neighbors (KNN) to recognize the source model of the printer for its simplicity. Experimental results validate that the suggested system has high taxonomy accuracy and requires less computation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.