Abstract
Most classification models for Alzheimer's Diagnosis (AD) do not have specific strategies for individual input samples, leading to the problem of easily overlooking personalized differences between samples. This research introduces a customized dynamically ensemble convolution neural network (PDECNN), which is able to build a specific integration strategy based on the distinctiveness of the sample. In this paper, we propose a personalized dynamic ensemble alzheimer's Diagnosis classification model. This model will dynamically modify the deteriorated brain areas of interest depending on various samples since it can adjust to variations in the degeneration of sample brain areas. In clinical problems, the PDECNN model has additional diagnostic importance since it can identify sample-specific degraded brain areas based on input samples. This model considers the variability of brain region degeneration levels between input samples, evaluates the degree of degeneration of specific brain regions using an attention mechanism, and selects and integrates brain region features based on the degree of degeneration. Furthermore, by redesigning the classification accuracy performance, we respectively improve it by 4 %, 11 %, and 8 %. Moreover, the degraded brain regions identified by the model show high consistency with the clinical manifestations of AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.