Abstract

AbstractCamouflage skin holds immense potential for a variety of advanced applications, such as artificial intelligence, soft robotics, and flexible/wearable electronics. Currently, most existing materials for constructing camouflage skin are mainly based on inorganic materials with an inverse opal scaffold, which significantly limits their further development because of the poor mechanical properties and environmental instability. Inspired by rana slvaticas, a new type of camouflage skin based on one‐dimentional (1D) photonic crystal (PC) gel is designed and synthesized, which combines the advantages of 1D PC structures with 3D flexible gels in a single skin device. Taking advantage of the unique structures, the resulting camouflage skins demonstrated attractive properties, including excellent mechanical performance, self‐adaptive camouflage capabilities, and long‐term stability in ambient conditions. Specifically, the camouflage skin can quickly recognize and match the background by modulating the optical signals of external stimuli. The synergistic effect of the glycerol, the dodecyl glycerol itaconate (DGI), and the nano‐space structures altogether contribute to the outstanding long‐term environmental stability of the camouflage skin. Overall, by combining the bio‐inspired concept and molecular engineering strategy, camouflage skin based on PC gels is synthesized, which greatly enriched the application and development in the smart skins field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call