Abstract

Wheeled mobile robot (WMR) has gained wide application in civilian and military fields. Smooth and stable motion of WMR is crucial not only for enhancing control accuracy and facilitating mission completion, but also for reducing mechanical tearing and wearing. In this paper, we present a novel bio-inspired approach aiming at significantly reducing motion chattering phenomena inherent with traditional methods. The main idea of the proposed smooth motion controller is motivated by two famous Chinese sayings “haste does not bring success” and “ride softly then you may get home sooner”, which inspires the utilization of pre-processing the speed commands with the help of fuzzy rules to generate more favorable movement for the actuation device, so as to effectively avoid the jitter problem that has not yet been adequately solved by traditional methods. Detail formulas and algorithms are derived with consideration of the kinematics and dynamics of WMR. Smooth and asymptotically stable tracking of the WMR along the desired position and orientation is ensured and real-time experiment demonstrates the effectiveness and simplicity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.