Abstract

Bio-hydrogen produced from acetic acid steam-exploded corn straw (ASCS) by simultaneous saccharification and fermentation (SSF) with Ethanoligenes harbinense 49. The effects of acetic acid concentration and enzyme loading were investigated with respect to the maximum specific hydrogen production rate and hydrogen productivity. The hydrogen yield increased with increasing of acetic acid concentration, increased and then decreased with increasing of enzyme loading. The effect of enzyme loading for hydrogen production was more crucial than that of the acetic acid concentration. At acetic acid concentration of 16% and enzyme loading of 120 and 180 U/g, the maximum hydrogen yield and maximum specific hydrogen production rate was 72 ml/g ASCS and 103 ml/g VSS·d, respectively. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.