Abstract

The deep-seated drug-resistant bacterial infection is one of the most noticeable public-health threat owing to poor drug therapeutic effect, high recurrence, and devastating complication. Herein, we propose a bactericidal strategy of bio-heterointerface charging through ultrasound-boosted bacterial extracellular and intracellular electron transfer for eradicating implant-related drug-resistant bacterial infection, where a TiO2-modified porphyrin-based two-dimensional metal-organic framework (2DMOF-TiO2) is selected as a sonosensitizer. The ultrasound-boosted extracellular and intracellular electron transfer between methicillin-resistant Staphylococcus aureus and 2DMOF-TiO2 induces rapid reactive oxygen species (ROS) burst surrounding bacterial outer and inner, contributing to intracellular oxidation, membrane potential decrease (∼5 mV), membrane disruption, and pyrimidine metabolism disorder, thus causing bacterial death. The in vivo results of 2DMOF-TiO2 implant exhibit rapid sonocatalytic anti-infection and enhanced osseointegration at bone-implant interface. This platform may inspire the universal thinking about ultrasound-boosted extracellular and intracellular electron-transfer-induced ROS and provide a superior therapeutic candidate for various deep-seated infectious diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.