Abstract

A pure cellulose was derived from waste fibre and it was chemically modified to a hydroxamic acid ligand. The poly(hydroxamic acid) was treated with an aqueous copper solution to afford the greenish stable five-membered copper complex; namely Cu(II)@PHA. Further, the Cu(II)@PHA was treated with a reducing agent hydrazine hydride to give brown colour cellulose supported copper nanocomplex (Cu(0)NC@PHA). The Cu(0)NC@PHA was characterised by ATR-FTIR, FE-SEM & EDS, TEM, ICP-OES, TGA, XRD and XPS analyses. The cellulose-based Cu(0)NC@PHA was used for the n-aryl/alkylation (Michael addition) reaction with a variety of α,β-unsaturated Michael acceptors to produce the corresponding n-aryl/alkyl products with an excellent yield at room temperature. The Cu(0)NC@PHA showed extraordinary stability and it was easily filtered out from the reaction mixture and may potentially recycled up to five times without loss of its original catalytic ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call