Abstract

Quantification of drug metabolites in biological samples has been of great interest in current pharmaceutical research, since metabolite concentrations and pharmacokinetics can contribute to a better understanding of the toxicity of drug candidates. Two major categories of Phase II metabolites, glucuronide conjugates and glutathione conjugates, may cause significant drug toxicity and therefore require close monitoring at early stages of drug development. In order to achieve high precision, accuracy, and robustness, stable isotope-labeled (SIL) internal standards (IS) are widely used in quantitative bioanalytical methods using liquid chromatography and tandem mass spectrometry (LC-MS/MS), due to their capability of compensating for matrix effects, extraction variations and instrument response fluctuations. However, chemical synthesis of SIL analogues of Phase II metabolites can often be very difficult and require extensive exploratory research, leading to higher cost and significant delays in drug research and development. To overcome these challenges, we have developed a generic method which can synthesize SIL analogues of Phase II metabolites from more available SIL parent drugs or SIL conjugation co-factors, using in vitro biotransformation. This methodology was successfully applied to the bio-generation of SIL glucuronide conjugates and glutathione conjugates. The method demonstrated satisfactory performance in both absolute quantitation and assessment of relative exposure coverage across species in safety tests of drug metabolites (MIST). This generic technique can be utilized as an alternative to chemical synthesis and potentially save time and cost for drug research and development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.