Abstract

This study’s purpose is to synthesize fluorescent hydrogel membranes using polyvinyl alcohol, chitosan and gelatin as bio-friendly substances, and to analyze the strengthening effect of graphitic carbon nitride/carbon quantum dots nanocomposite (g-C3N4/CQDs) on optical, mechanical and rheological properties of the synthesized hydrogel membranes (HMs). A two-step pyrolysis of the mixture of starch as a natural resource and urea as a nitrogen resource with 1:10 weight proportion was utilized to synthesize g-C3N4/CQDs nanocomposite via microwave-assisted system. Water absorption value in the synthesized samples was calculated 237–275%. UV absorbance and fluorescence features were investigated by UV–visible and photoluminescence spectroscopy. Results indicated that adding 0.5 wt% and 1 wt% g-C3N4/CQDs to HMs matrix led to UV absorption in 225, 275 and 395 nm wavelengths and strong fluorescence emission in 515 nm (green region). Samples flexibility was figured 22–56% by tensile test results so that by an increase in filler content, flexibility was driven down but tensile strength was driven up. Rheometry test findings confirmed that g-C3N4/CQDs adding resulted in improvement of rheological properties of the HMs like storage modulus and loss modulus, and growth of complex viscosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call