Abstract

A green chemistry approach was employed to synthesize silica nanoparticles (SiNPs) using aqueous extract of Bryophyllum pinnatumleaf as capping agents. The novelty of this study was to produce silica nanoparticles using the biological method. An analysis of the physicochemical properties of formed nanoparticles was successfully completed through sophisticated characterization methods, such as UV-Visible absorbance spectroscopy, Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, zeta potential analysis, and thermo-gravimetric analysis. All the characterization results indicated their spherical morphology and amorphous nature with an average size of 24nm. FT-IR results highlighted the key bioactive compounds that could be responsible for capping and reducing the formation of SiNPs. Synthesized SiNPs show excellent stability with a negativezeta potentialvalue of - 32mV. The biomolecules from B. pinnatum were successfully working for the formation of Si NPs with spherical shapes. Moreover, to assess the agricultural application, green-synthesized SiNPs were carried out by seed germination assay onVigna radiata. The seed germination assay confirms that a low concentration of SiNPs enhances seed germination. Meanwhile, a higher concentration of the SiNPs inhibits seed germination and shoot, and root formation. SiNPs at optimum concentration could be used in the agriculture field as nano growth promoters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.