Abstract

The rising levels of water contamination worldwide signal a significant need for new materials for its restoration in the coming years. This study provides a novel, simple, cost-effective, and environmentally friendly approach for the production of zinc oxide (ZnO) nanoparticles (NPs) as a promising photocatalyst through the reduction of zinc nitrate hexahydrate using a leaf extract of Piper betle (P. betle). The wurtzite hexagonal structure of ZnO, with a crystallite diameter of 43.44 nm and an energy band gap of 2.97 eV, was seen in P. betle/ZnO. The Fourier transform infrared (FTIR) study showed that phytochemicals from the P. betle extract were present on the surface of P. betle/ZnO. The high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) analyses revealed the existence of multiple structures scattered evenly (spherical, hexagonal, and rod-shaped). The BET findings indicate that P. betle/ZnO NPs have a highly porous structure with a significant surface area of 97.11 m2/g. The degradation of commercial dye was employed to evaluate the photocatalytic capability of P. betle/ZnO. With ultraviolet radiation, the removal percentage of light green dye might surpass 99% in 80 min with a degradation rate of 2.58 × 10−2 min−1. It was observed that the degradation kinetics follow pseudo-first-order kinetics. P. betle/ZnO is acknowledged as an effective photocatalyst for the treatment of commercial effluent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call