Abstract

Crustacean aquaculture is a multibillion-dollar industry worldwide that continues to show significant growth. Shrimp farming has been intensified for decades, and super-intensive closed culture systems have now been developed to improve productivity and reduce environmental burdens. Here, we used bio-economic approaches to investigate the mechanisms and economic productivity of shrimp farming. We used three steps: (1) path analysis by using structural equation models to determine the candidate factors associated with productivity; (2) modeling of population dynamics and profits; and (3) simulations based on the models to clarify the productive characteristics of a super-intensive closed culture system. Our findings suggest that the population dynamics of the system were limited by unidentified factors that differed from those found in many experimental studies, such as water temperature, salinity, dissolved oxygen, and nitrogenous waste. The unidentified factors were related to the number of days of rearing and cumulative biomass mortality. The production plan suggested by our simulation required frequent culture rotation to increase profits. Our case study provides important practical information about the characteristics of super-intensive shrimp farming, implications for efficient economic management, and new research subjects for the future.

Highlights

  • Shrimp farming is an important component of the aquaculture industry

  • We focused on the utility of such bio-economic approaches in improving management strategy for superintensive closed culture shrimp production using the Indoor Shrimp Production System (ISPS) plant operating in Myoko City, Niigata Prefecture (Japan), as a case study

  • Our findings reveal the existence of factors that decreased productivity but were not identified in previous experimental studies; they suggest improvements that could be made to subsequent production plans to deal with such factors

Read more

Summary

Introduction

Shrimp farming is an important component of the aquaculture industry. Despite these positive impacts, the growth of the industry has suffered many problems in recent years. Shrimp farms occupy between 1 million and 1.5 million hectares along the world’s coastlines (Berlanga-Robles et al 2011), and mangrove degradation is a major environmental consequence in American and Asian coastal areas. Almost half of the world’s total mangrove land cover area has likely been depleted over the past 50 years (Curran 2002).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.