Abstract

Soil degradation is a major threat to agricultural sustainability in Nepal. Increased anthropogenic activities in the inherently fragile ecosystem of unstable geology, steep slopes and intense monsoon rains have accelerated the loss of soil and its fertility in the Nepalese hills. This paper assesses soil conservation technologies from biophysical and economic perspectives using the integrated bio-economic analysis. The study applied a biophysical model, Soil Change Under Agroforestry (SCUAF), to project effects of the conservation technologies on soil erosion control as well as on crop yields over a thirty-year period. The technologies considered are hedgerow intercropping and minimum tillage. The outcome of the biophysical model was integrated into a cost-benefit analysis to examine the economic viability of the technologies. The results showed that these technologies are effective in reducing a substantial rate of soil erosion prevailing in the conventional system of maize cultivation. They have a variable impact on yield maintenance and the farmers’ economic return over time. The hedgerow intercropping sustained crop yields in the long-term although yield was reduced in the short-term. Likewise, high costs for establishing and maintaining the hedgerow intercropping significantly reduced farmers’ economic returns in the short-term. Minimum tillage technology, while better than the conventional farming system, was not able to sustain crop yield in the long-term. Yet, it provided positive returns for a longer period than the conventional system. The study concludes that though the evaluated technological options are effective in reducing the high rate of erosion resulting from the conventional maize cropping system, economically they are not viable for farmers in the short-term. Therefore, to expedite the wider adoption of these technologies and to halt and reverse soil degradation, it is suggested that farmers initially be supported with economic incentives to compensate their short-term economic loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call