Abstract
Carbon-based nanomaterials are promising for a wide range of biomedical applications, i.e. drug delivery, therapy, and imaging including photoacoustic tomography, where they can serve as contrast agents, biocompatibility and biodistribution of which should be assessed before clinical setting. In this paper, localization of carbon flurooxide nanoparticles, carbon nanodots from β-alanine, carbon nanodots from urea and citric acid and glucose-ethylenediamine nanoparticles (NPs) in organs of Wistar rats were studied by photoacoustic measurements after 24 h of their intravenous injection. 16 ns light pulse from a Q-switched Nd:YAG laser with 1064 nm wavelength was used as an excitation source. The laser-induced photoacoustic signals were recorded with a ring piezoelectric detector. Light absorption by carbon NPs resulted in noticeable enhancement of the photoacoustic amplitude in the tissues where the NPs were accumulated. The NPs were preferably accumulated in liver, kidneys and spleen, and to a lesser extent in heart and gastrocnemius muscles. Together with remarkable fluorescent properties of the studied carbon nanomaterials, their photoacoustic responses allow their application for bi-modal fluorescence-photoacoustic bio-imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.