Abstract

Synthetic dyes from textile, paper, leather, and plastic processing, etc. are the majority of the colored effluents and have a harmful impact on human health and environment. Dye biosorption through endophytic fungi will be a challenge. A new fungus isolated from blueberry pulp was identified morphologically and genetically as Penicillium janthinellum LM5. It was utilized for the biosorption of synthetic dyes by forming mycelium particles with efficient decolorization properties in the dye solution. The results of decolorization experiments exhibited that dye type, pH, temperature and time were the important factors and the best decolorization condition on Congo red was pH 6.0, 30 ℃ and 48 h. Moreover, LM5 can achieve 90% decolorization rate even under the high salt concentrations of 200 mg/mL. Based on spectral analysis, the decolorization of Congo red was mainly attributed to the biosorption of mycelium and its pellet structure. Additionally, the fungus adsorbed Congo red can be as an excellent electrode material with a long-cycle performance and stable capacitance property, being a good way for recycling. In summary, this research employed a novel dye treatment method with simultaneous culture and decolorization through an endophytic fungus LM5, being a promising biomaterial in the application of dye wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.