Abstract

In this work, a series of bio-based epoxy vitrimers were developed by reacting diglycidyl ether of bisphenol A (DGEBA) and bio-based 2,5-furandicarboxylic acid (FDCA) at different molar ratios. Triazabicyclodecene was used as a transesterification catalyst to promote thermally induced exchange reactions. Differential scanning calorimetry, gel content measurements, and Fourier transform infrared spectroscopy were used to study the FDCA-DGEBA crosslinking reaction. The transesterification exchange reaction kinetics of such crosslinked systems was characterized via stress relaxation tests, evidencing an Arrhenius-type dependence of the relaxation time on temperature, and an activation energy of the dynamic rearrangement depending on the molar composition. In addition, self-healing, thermoformability, and mechanical recycling were demonstrated for the composition showing the faster topology rearrangement, namely, the FDCA/DGEBA molar ratio equal to 0.6. This work provides the first example of bio-based epoxy vitrimers incorporating FDCA, making these systems of primary importance in the field of reversible, high-performance epoxy materials for future circular economy scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.