Abstract
ABSTRACTA novel renewable resource based tri-functional epoxy resin from itaconic acid (TEIA) was blended with petroleum based epoxy resin (DGEBA) and fabricated at different ratios. Then, it was by thermally cured with methylhexahydrophthalic anhydride (MHHPA) in presence of 2-methylimidazole (2-MI) catalyst. The tensile, modulus, strength of virgin epoxy resin (41.97 MPa, 2222 MPa) increased to 47.59 MPa, 2515 MPa, respectively, with the addition of 30% of TEIA. The fracture toughness parameter, critical stress intensity factor (KIC) revealed enhancement of toughness in the TEIA bio-based blends system. The thermomechanical properties of TEIA (tri-functional epoxy resin from itaconic acid) modified petroleum-epoxy networks were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The fracture morphology was also studied by the scanning electron microscopy and atomic force microscopy respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.