Abstract

Photocurable biomaterials that can be delivered as liquids and rapidly (within seconds) cured in situ using UV light are gaining increased interest in advanced medical applications. Nowadays, fabrication of biomaterials that contain organic photosensitive compounds have become popular due to their self-crosslinking and versatile abilities of changing shape or dissolving upon external stimuli. Special attention is paid to coumarin due to its excellent photo- and thermoreactivity upon UV light irradiation. Thus, by modifying the structure of coumarin to make it reactive with a bio-based fatty acid dimer derivative, we specifically designed a dynamic network that is sensitive to UV light and able to both crosslink and re-crosslink upon variable wave lengths. A simple condensation reaction was applied to obtain future biomaterial suitable for injection and photocrosslinking in situ upon UV light exposure and decrosslinking at the same external stimuli but at different wave lengths. Thus, we performed the modification of 7-hydroxycoumarin and condensation with fatty acid dimer derivatives towards a photoreversible bio-based network for future medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.