Abstract

The eco-friendly polymeric nanocomposite hydrogels were prepared by incorporating dendritic fibrous nanosilica (DFNS) and apple peel (AP) as reinforcements into the crosslinked polymer produced by cellulose (CL) and poly (glycerol tartrate) (TAGL) via gelation method and used for efficient adsorption of Pb2+, Co2+, Ni2+, and Cu2+ metal ions. DFNS and DFNS/TAGL-CL/AP samples were characterized by FESEM, FTIR, TEM, TGA, and nitrogen adsorption/desorption methods. The results of TGA analysis showed that the thermal stability of the prepared hydrogels improved significantly in the presence of DFNS. Both synthetic and environmental parameters were investigated and the adsorption capacity reached 560.2 (pH = 4) and 473.12 (pH = 5) mg/g for Pb2+ and Cu2+ respectively, using initial ion concentration of 200 mg/L. Also, the maximum adsorption capacity was 340.9, and 350.3 mg/g for Co2+ and Ni2+, respectively under optimum conditions (pH = 6, initial ion concentration of 100 mg/L). These experiments indicated that the DFNS/TAGL-CL/AP nanocomposite hydrogel has an excellent performance in removal of Pb2+ and can adsorb this toxic metal in only 30 min while the optimum contact time for other metals was 60 min. Pseudo-second-order and Langmuir models were used to define the kinetic and adsorption isotherms, respectively and thermodynamic studies demonstrated that the adsorption was endothermic for Co2+, Ni2+ and Cu2+, exothermic for Pb2+, and spontaneous in nature for all metal ions. Furthermore, the reusability tests indicated that the hydrogels could maintain up to 93% of their initial adsorption capacity for all metal ions after four cycles. Therefore, the prepared nanocomposite hydrogels can be suggested as efficient adsorbents to remove the toxic metals from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.