Abstract

ABSTRACTBio‐based polyurethane (PU) foams were developed from bio‐polyol (castor oil‐based) in the presence of selective catalyst, surfactant, and blowing agent. Bentonite nanoclay (NC) was incorporated into the bio‐polyol mixture as nano‐reinforcement, while, triethyl phosphate was used as flame‐retardant agent. After fabrication, these bioengineered foam nano‐composites were studied for microstructural, mechanical and thermal characterizations. Fourier transform infrared spectroscopy analysis indicated the presence of characteristic functionalities within biopolyol segments, which was influenced by reactant activity within the polyurethane (PU) foams. Scanning electron microscopy revealed the cellular morphology of the foam. Thermogravimetric analysis enabled the study of foam decomposition behavior for different sample compositions. Incorporation of NC into pristine foam was found to delay the onset degradation temperature. Flammability studies depicted significant enhancement of flame retardancy with incorporation of NC up to a certain loading level. Compression tests demonstrated that significant improvement of compressive strength properties of foams could be achieved by incorporating bentonite nanoclay, owing to nucleation effect of nanoclay and corresponding enhanced structural integrity. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47063.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.