Abstract

AbstractThe fabrication of composites of two or more materials with different polarities requires the use of compatibilisers to improve interface properties. However, most compatibilisers used for industrial production are derived from the cracking products of petroleum, which is a limited resource susceptible to price fluctuations and pollutes the environment. In this study, a new compatibiliser derived from renewable plant‐oil‐based products, ESO–G–OA, was designed and synthesized using epoxy soybean oil, oleic acid, and glycerol. Scanning electron microscopy results showed that ESO–G–OA can effectively improve the dispersion of CaCO3 in a recycled high‐density polyethylene (reHDPE) matrix and reduce the interfacial gap between the two phases. The analysis of the mechanical properties showed that the ESO–G–OA‐modified composite has higher tensile and impact strength than unmodified samples. The ESO–G–OA modification improved the thermal stability and melt flow of the composite and reduced the energy consumption during processing. Moreover, the excellent compatibility of ESO–G–OA can improve the comprehensive properties of CaCO3/reHDPE composites, compensating for the performance reduction caused by the multiple processing steps necessary to obtain reHDPE. This confirmed that ESO–G–OA has promising application prospects in the production of composites requiring compatibilisers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.