Abstract
S. aureus is one of important causes of disease, food poisoning in humans and animals. The generally methods for detection of S. aureus is time consuming. Therefore, a new method is necessary for rapid, sensitive and specific diagnosis of S. aureus. In the present study, two probes and a Bio-barcode DNA were designed for detection of S. aureus (Protein A). Firstly, magnetic nanoparticle (MNPs) and gold nanoparticle (AuNPs) were synthesized at 80 °C and 100 °C, respectively. The AuNPs and the MNPs were functionalized with probe1, Bio-barcode DNA and probe2, respectively. Target DNA was added into the nanomaterial's system containing bio-barcode DNA-AuNPs-probe1 and probe2-MNPs to formed bio-barcode DNA-AuNPs-probe1-target DNA-probe2-MNPs complex. The bio-barcode DNA-AuNPs-probe1-target DNA-probe2-MNPs complex was separated with magnetic field. Finally, the bio-barcode DNA was released from surface of complex using DTT (0.8 M) and there was isolated of nanoparticles by magnetic field and centrifuge. The fluorescence intensity of bio-barcode DNA was measured in different concentrations of S. aureus (101 to 108 CFU mL−1) by fluorescence spectrophotometry. The results showed that standard curve was linearly from 102 to 107 CFU mL−1. Limit of detection of bio-barcode assay for both PBS and real samples was 86 CFU mL−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.