Abstract

BackgroundBiomass fuels (bio-jet fuel) have recently attracted considerable attention as alternatives to conventional jet fuel. They have become the focus of aircraft manufacturers, engines, oil companies, governments and researchers alike. This study is concerned with the production of biojet fuel using waste cooking oil (WCO). Batch reactor is used for running the experimental study. The catalytic cracking products are investigated by GC mass spectra. Final products from different reaction conditions are subjected to fractional distillation. The (Bio kerosene) fraction was compared with the conventional jet A-1 and showed that it met the basic jet fuel specifications. Optimum reaction conditions are obtained at (450 °C), pressure of (120 bars), catalyst dose (2.5% w/v), reaction time (60 min) and hydrogen pressure 4 atmosphere. The aim of this study is to produce bio aviation fuel according to specifications and with a low freezing point from waste cooking oil in one step using a laboratory prepared catalyst and with a low percentage of hydrogen to complete the process of cracking and deoxygenation in one reactor, which is naturally reflected positively on the price of the final product of bio aviation fuel.ResultsThe results indicated that the product obtained from WCO shows promising potential bio aviation fuels, having a low freezing point (− 55 °C) and that all bio kerosene’s specifications obtained at these conditions follow the international standard specifications of aviation turbine fuel.ConclusionBiojet fuel obtained from WCO has fairly acceptable physico-chemical properties compared to those of petroleum-based fuel. Adjustment of the hydro catalytic cracking reaction conditions was used to control quantities and characteristics of produced bio aviation fuel. Taking into consideration the economic evaluation WCO is preferable as raw material for bio aviation fuel production due to its low cost and its contribution in environmental pollution abatement. Blend of 5% bio aviation with jet A-1 (by volume) can be used in the engine without any modifications and a successful test of blended aviation fuel with 10% bio aviation has been achieved on Jet-Cat 80/120 engine.

Highlights

  • IntroductionBiomass fuels (bio-jet fuel) have recently attracted considerable attention as alternatives to conven‐ tional jet fuel

  • Biomass fuels have recently attracted considerable attention as alternatives to conven‐ tional jet fuel

  • Physicochemical properties of waste cooking oil The chemical composition and physical characterization of WCO are given in Table 2 from which it is clear that the composition and properties of WCO indicated that the fuel produced from the feedstock are regarded as environmentally benign green fuels; the acidity of the oils is within the acceptable range, insuring that oil does not contain any corrosive materials which confirm high quality of oil

Read more

Summary

Introduction

Biomass fuels (bio-jet fuel) have recently attracted considerable attention as alternatives to conven‐ tional jet fuel They have become the focus of aircraft manufacturers, engines, oil companies, governments and researchers alike. The aim of this study is to produce bio aviation fuel according to specifications and with a low freezing point from waste cooking oil in one step using a laboratory prepared catalyst and with a low percentage of hydrogen to complete the process of cracking and deoxygenation in one reactor, which is naturally reflected positively on the price of the final product of bio aviation fuel. They have become the focus of aircraft manufacturers, engines, oil companies, governments and

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call