Abstract
Osteoarthritis is a leading cause of pain and joint immobility, the incidence of which is increasing worldwide. Currently, total joint replacement is the only treatment for end-stage disease. Scaffold-based tissue engineering is a promising alternative approach for joint repair but is subject to limitations such as poor cytocompatibility and degradation-associated toxicity. To overcome these limitations, a completely scaffold-free Kenzan method for bio-3D printing was used to fabricate cartilage constructs feasible for repairing large chondral defects. Human induced pluripotent stem cell (iPSC)-derived neural crest cells with high potential to undergo chondrogenesis through mesenchymal stem cell differentiation were used to fabricate the cartilage. Unified, self-sufficient, and functional cartilaginous constructs up to 6 cm2 in size were assembled by optimizing fabrication time during chondrogenic induction. Maturation for 3 weeks facilitated the self-organisation of the cells, which improved the construct’s mechanical strength (compressive and tensile properties) and induced changes in glycosaminoglycan and type II collagen expression, resulting in improved tissue function. The compressive modulus of the construct reached the native cartilage range of 0.88 MPa in the 5th week of maturation. This paper reports the fabrication of anatomically sized and shaped cartilage constructs, achieved by combining novel iPSCs and bio-3D printers using a Kenzan needle array technology, which may facilitate chondral resurfacing of articular cartilage defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.