Abstract

The fact that the stable mononuclear vanadium carbonyl V(CO)6 fails to satisfy the 18-electron rule has led to an investigation of the binuclear vanadium carbonyls V2(CO)n (n = 10-12) using methods from density functional theory. There are several important experimental studies of these homoleptic binuclear vanadium carbonyls. The global minimum for V2(CO)12 is a singlet structure having two V(CO)6 units linked by a long V-V single bond (3.48 A by B3LYP or 3.33 A by BP86) without any bridging CO groups. For V2(CO)11 the global minimum is a singlet structure V2(CO)10(eta2-mu-CO) with a four-electron pi-donor bridging CO group. For V2(CO)10 the global minimum is an unsymmetrical singlet (OC)4VV(CO)6 structure with three semibridging CO groups and a V-V distance of 2.54 A (B3LYP) or 2.51 A (BP86), suggesting a VV triple bond. The theoretical nu(CO) frequencies of this V2(CO)10 isomer agree approximately with those assigned by Ishikawa et al. (J. Am. Chem. Soc. 1987, 109, 6644) to a V2(CO)10 isomer produced in the photolysis of gas-phase V(CO)6. In contrast, the laboratory bridging nu(CO) frequency assigned to V2(CO)12 by Ford et al. (Inorg. Chem. 1976, 15, 1666) seems more likely to arise from the lowest-lying triplet isomer of V2(CO)11.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call